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Abstract 

Nosologically, ttransmissible spongiform encephalopathiest (TSE or prion diseases) ’ 
should be grouped with other neurodegenerative disorders such as Alzheimer’s and 
Parkinson’s diseases, which are all caused by toxic gain of function of an aberrant form of a 
constitutively expressed protein. Failure to clear these proteins from the brain induces 
neuronal dysfunction. Transmissibility is the property that separates TSE from other 
neurodegenerative diseases, and this property seems to reside within the structure of the 
abnormal protein. The human phenotypic range of these encephalepathies includes 
Creutzfeldt-Jakob disease and its variant form, km-u, Gerstmann-Straussler-Scheinker 
syndrome, and fatal familial insomnia. Notwithstanding the generally low incidence of TSE 
and their limited infectiousness, major epidemics such as bovine spongiform encephalopathy 
and km-u arise in situations lwhere intraspecies recycling of the abnormal protein is sustained. 
Moreover, evidence of chronic subclinical infection in animals offers insights into 
pathogenesis and prompts m-evaluation of the notion of species barriers and present infection 
control measures. Since case-to-case transmission is the only known mechanism underlying 
epidemics of TSE, potential reservoirs of infectivity in the tails of epidemics need continued 
vigilance. 
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Transmissible spongiform encephalopathies (TSE or prion diseases) form a biologically 
unique group of infectious fatal neurodegenerative disorders, which are caused by toxic gain 
of function in a normal host cell protein (the prion protein, PrP).[ I] Human TSE include 
classic Creutzfeldt-Jakob disease (CJD) and the variant form, Gerstmann-Str8ussler- 
Scheinker syndrome, fatal Eamilial insomnia, and kuru. Fatal familial insomnia, Gerstmann- 
Strtiussler-Scheinker syndrome, and familial CJD are genetically determined by mutations 
within the open reading frame of the PrP gene (PRNp).[ 1 J Less distinct or overlapping 
neurological and neuropsychiatric syndromes, usually linked to specific mutations and 
polymorphisms within PRNP, contribute to an expanding spectrum of TSE.[2] These less 
common phenotypes are increasingly recognised because of greater use of specific 
confirmatory tests, including PRNP genotyping. Non-human TSE include scrapie of sheep 
and goats, bovine spongiform encephalopathy, and chronic wasting disease of mule deer and 
elk.[ I] Recognition of variant CJD, zoonotically linked to bovine spongiform 
encephalopathy, has heightened awareness of this group of disorders. [3 and 41 

Molecular biology of PrP and pathogenesis of TSE 

The pathogenesis of TSE is linked to simultaneous expression of normal PrP (PrPC or PrPsen) 

http://www.sciencedirect.com/science?-ob=A~icle~&-ase~W-WA-A-A-A-MsSA~W-~... l/7/2004 



ScienceDirect - The Lancet : Transmissible spongiform encephalopathies Page 3 of 27 

and accumulation of structurally aberrant, protease-resistant, conformers (PrPres).[5] These 
protein conformers have identical primary structures (aminoacid sequences) but differ at a 
higher structural level such as folding. PrPres is a generic term, denoting abnormal 
conformers associated withl, for example, scrapie (PrPSc) and CJD (PrPcJD). Nosologically, 
therefore, TSE should be grouped with other neurodegenerative disorders, such as 
Alzheimer’s and Parkinson”s diseases, which are also associated with aggregating conformers 
of constitutively expressed proteins, with soluble toxic species related to disease 
pathogenesis.[o] However, the infectiousness of TSE is a fundamental difference. 

Normal PrP 

PrPc (figure 1) is encoded by PRAY’, a small, single-copy, housekeeping gene on 
chromosome 20, which is e:xpressed at highest levels in neurons.[7] The gene has only three 
exons and the entire open mading frame is in one exon. The human PrPc protein is 
synthesised as a 253 aminoacid polypeptide chain from which the first 22 aminoacids (signal 
peptide) are cleaved shortly after translation commences. Post-translational processing adds a 
C-terminal glycosylphosphatidylinositol (GPI)-anchor at residue 230, which facilitates 
glycolipid linkage of PrPc to the cell membrane. Two N-linked glycosylation sites are located 
at residues 18 1 and 197. A nonapeptide followed by four identical octapeptide repeats are 
normally located between residues 5 1 and 91. A normal polymorphism (valine or 
methionine) resides at residiue 129 (figure 1). 

1(2 1 K) 

Figure 1. PRNP mutations associated with familial forms of human TSENeuropathologically 
confirmed (red) and uncontinned (blue) CJD mutations. Mutations associated with Gerstmann- 
Straussler-Scheinker syndrome (green). *Associated with familial forms of CJD and fatal 
familial insomnia: the clinical phenotype of this mutation segregates with valine or methionine at 
residue 129, respectively. 

Nuclear magnetic resonance analysis of recombinant PrPc from various species suggests that 
all consist of three a-helical regions (two linked by a disulphide bridge), a short anti-parallel 
P-pleated segment, and a flexibly disordered N-terminus up to residue 120. Overall structure 
is that of a small globular protein.[8] Crystallographic studies lend support to this monomeric 
structure, but in the dimeric form, an unusual domain swapping of helix 3 is apparent, with 
creation of a novel short anti-parallel P-sheet segment at the molecular interface. [9] There is 
a high level of structural identity between bovine and human PrP. [lo] 

Although the biological function of PrPc remains to be defined, it has been implicated in 
diverse activities, including neuronal copper metabolism[ 1 l] and synaptic transmission. [ 121 
Polypeptides based on the PrPC sequence selectively bind divalent copper ions,[ 11, I 3 and 
141 and this binding confers; an ordered secondary structure. [ 131 Two binding regions have 
been delineated. [ 14, I 5 and lo] Binding affinity has been described in the fmol/L [ 151 to 
/‘mol/L range, [ 17 and 181 with the latter seeming most probable and relevant to 
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physiological function. Binding of other divalent transition metals such as nickel, zinc, and 
manganese to PrP is less certain. How copper binding relates to normal PrPc function and 
whether it has any role in disease pathogenesis remains to be clarified.[ 181 Nevertheless, 
copper binding aids restoraltion of resistance to proteinase K and disease transmissibility to 
PrPres , which had lost these characteristics through partial denaturation.[ 191 

Generation of PrPres from PrPC 

The primary aminoacid sequences of PrPc and PrPres are exactly the same. PrPres is only 
detectable in the context of disease, developing through post-translational modifications that 
involve conformational ratlher than covalent change. Furthermore, the amounts of PrP mRNA 
transcripts in the brain do not rise as disease progresses.[7] Laboratory data, including 
repeated failure to detect a conventional infectious agent, have consolidated the protein-only 
(prion) hypothesis, that PrPres constitutes predominantly, if not exclusively, the infectious 
unit in TSE. 

PrPC is directed to the endoplasmic reticulum by the signal peptide, where simple N-linked 
oligosaccharides and the GPI-anchor are added, and it arrives at the cell surface after 
transiting the Golgi apparatus where further oligosaccharide modifications take place (figure 
2). Most PrPc is transported to the cell surface where it is predominantly located in 
specialised detergent-resistant microdomains (DRM) known as rafts or caveolae.[20] 
Findings of transfected-cell studies indicate that wild-type PrP cycles between the cell 
surface and an early endocytic compartment, via an association with clathrin-coated pits, [2 1 ] 
but also can migrate to late endosomes or lysosomes via non-classic, caveolae-containing 
endocytic structures, apparently completely bypassing clathrin-related endocytic 
mechanisms. [20] Such variations in PrPc endocytic trafficking could indicate the cell type in 
which exogenous PrP was expressed.[22] Disturbances in normal intracellular trafficking of 
PrPc can culminate in its retrograde transport through the Golgi apparatus, with heightened 
accumulation of PrPres in the endoplasmic reticulum. 
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Figure 2. Normal PrPc synthesis and cell turnover with possible sites of conversion to 
PrPWsMechanisms of toxicity and neurodegeneration remain unresolved. 

The site of PrPc to PrPres conversion is uncertain. DRM[21 J and the endosomal pathway [23] 
are possible sites for transformation. The endoplasmic reticulum may participate too, 
especially in familial TSE. [24] DRM could be important sites for initial PrPres propagation 
during intercellular spread, because membrane-associated conversion seems to need insertion 
of PrPres * mto the cell membrane, possibly by exchange of membrane particles or by GPI- 
anchor-dependent painting. Cell-free conversion models show the need for physical 
contiguity when different membrane components harbour PrPC and PrPres.[25] 
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Other aspects of normal PrPc cell biology may be closely related to pathogenesis (figure 3). 
PrPc has a half-life of only 5 h or so, and up to 10% of newly synthesised protein might be 
retrogradely transported from the endoplasmic reticulum to the cytosol, where it undergoes 
degradation,[26] although conflicting results have been reported. [37] 

PrPc synthesis followed by degradation and clearance of misfolded protein seem to be finely 
balanced functions, since incorrectly folded conformers are not detected under usual 
conditions. Manipulation of synthesis and degradation pathways has indicated possible 
mediators of PrP-related toxic effects and highlighted the complexity of the system. 
Perturbation of proteasome function results in wild-type PrP accumulation in the cytoplasm, 
which correlates with toxic effects in vulnerable cell lines and neurodegeneration in 
transgenic mice, without PrPres formation.[28] However, findings of subsequent studies 
suggest that cytoplasmic accumulation of PrPC may indicate an absence of translocation of 
the nascent PrP peptide to the endoplasmic reticulum under conditions of increased PrP 
expression rather than retrograde transport.[27] Nonetheless, PrP, harbouring mutations 
associated with familial TSE, accumulates in the endoplasmic reticulum [24 J and cytoplasm 
in the absence of proteasomal inhibition. PrP accumulating in the cytosol forms aggregates, 
which acquire some properties of PrPres, and, once present, persist despite only transient 
proteasome inhibition.[29] This occurrence suggests that PrP, by contrast with other 
proteasomaly degraded proteins, could have a unique innate ability to promote and sustain its 
own conformation change. Importantly, in-vitro toxic effects did not correlate with 
appearance of PrPres.[29] Data of this type suggest a generic mechanism underlying age- 
related neurodegenerative diseases, wherein compromise of quality control of endoplasmic 
reticulum protein synthesis from whatever cause allows harmful soluble conformers to 
accumulate. 

Once present, PrPres seems to serve as a template for conversion of PrPc to the abnormal 
disease-associated form, in a cyclic autocatalytic amplification, needing at least temporary 
dimerisation of the two isoforms. This template property of PrPres, shown in a cell-free 
conversion assay,[30] has rleplicated in vitro many of the species and strain characteristics 
noted in TSE. The precise in-vivo mechanism by which PrPc is converted to PrPres remains 
to be clarified, but a stepwi:se transformation and acquisition of altered biophysical properties 
seems most likely, with folding intermediates, including molten globule forms.[2 1 and 3 l] 
An antibody to a highly conserved YYR motif of mammalian PrP has been identified, which 
selectively binds to the pathological isoform present in infected tissue. [32] Such approaches 
might help to dissect the structure of the pathological PrP isoform and the underlying 
structural changes. [33] Molecular chaperoning factors specific to the conversion process are 
also postulated. [34] In vitro, the two isoforms are reversible if buffer conditions are altered, 
but conversion rates can be slow [3 l] and limited under physiological conditions. 1351 In 
solvent replacement studies, agents (formic acid, trifluoroacetic acid) most capable of 
converting P sheet structure to a helices were also the most effective at reducing infectivity. 

PrPc is soluble in mild detergents, protease sensitive, and shows a high cx helical and low P 
sheet content.[36] PrPres is only sparingly soluble in non-ionic detergents and shows relative 
protease resistance, a feature frequently exploited in diagnostic and experimental studies.[37] 
These properties directly relate to the enhanced P sheet content (>30%) noted in PrPres,[36] 
which also accounts for its innate amyloidogenicity with strong tendency to self-aggregation 
and fibril formation. [36] These properties have also prevented detailed structural analysis. 
The thermodynamic stability of PrPres is noteworthy. 
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A key determinant of infectivity relates to the homology of PrPC primary sequences (and 
consequent structures) in the donor and recipient species. Mouse and hamster PrPc are 87% 
and 89% homologous with the human protein primary aminoacid sequence, with single 
aminoacid differences between mouse and hamster PrPC effecting a species barrier.[38] 
Transmissibility could also be affected by secondary and tertiary structure identity between 
PrP species. 
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PrPres fragments and glycotypes 

Variations in tertiary structure of PrPres probably correlate with differing surface exposures 
of the protein, and account for differences in cleavage sites with protease digestion. 
Proteinase K digestion of PrPres removes a variable number of N-terminal aminoacids (up to 
around residue 90), and the resulting fragment shows a relative mobility of 27-30 kDa on 
western blots (PrP27-30).[5] Two nomenclatures have been used to describe protease- 
resistant PrPres fragments in non-familial CJD. The first describes two principal PrPres types 
after deglycosylation of PrP27-30, with electrophoretic mobilities of 21 kDa (type 1) and 19 
kDa (type 2).[39] The second nomenclature describes four principal types that are 
distinguished by electrophoretic mobility, glycoform ratio, and effects of metal binding. [40 
and 4 1 ] Detailed analysis of proteinase K digested PrPres from a range of human TSE shows 
that the N-terminus can be cleaved anywhere from residue 74 to 102. In individual patients, 
there is most often a range of cleavage products, but predominance of digestion at glycine 
residue 82 arises in patients with type 1 PrPres, whereas removal of aminoacids to the serine 
at position 97 is most abundant in type 2. 

Is PrPres solely responsible for neurodegeneration and 
infectivity? 

20 years have elapsed since hamster-adapted scrapie infectivity was shown to copurifj with a 
protein of 27-30 kDa (PrP27-30), and the term prion was coined to describe a proteinaceous 
infectious particle resistant to inactivation procedures that modify nucleic acids.[ 1 and 51 
Considerable data now lend. support to the primacy of PrPres in disease pathogenesis and 
transmission. Nevertheless, some in-vitro and animal models of TSE prompt uncertainty. 

Infectivity and neurodegeneration probably have separate mechanisms, and the role of PrPres 
may differ. PrPres is perhapls more directly related to transmission but, in the absence of PrPC 
expression, PrPres is insufficient to transmit disease or induce neuropathological changes.[42] 
Also, acquisition of one or more altered biophysical properties does not simply equate to 
transmissibility of disease. As yet, researchers have not been able to prove the protein-only 
hypothesis and induce a transmissible neurological disease with PrPres generated by in-vitro 
conversion.[43] Doubt about the primacy of PrPres stems from demonstration of minimal or 
no PrPres in the brains of occasional patients and rodents manifesting-and even serially 
transmitting-disease.[44,45,46 and 471 For example, in bovine spongiform 
encephalopathy transmission studies to wild-type mice, [47] PrPres was not detectable in 
brain homogenates of some mice despite successful transmission of a neurological disease. 
Generally, further passages did lead to emergence of PrPres, and only then were spongiform 
change and overt gliosis present. 
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Insensitivity of biochemical assays might be relevant to absence of PrPres despite disease 
transmission in rodents, but the situation seems more complex in some human genetic forms 
of TSE. Some patients dying from fatal familial insomnia,[45] and those with Gerstmann- 
Straussler-Scheinker syndrome harbouring the Al 17V mutation, have no PrPres detectable in 
their brains, and their disease is usually not transmissible. In patients with the Al 17V 
mutation there is instead upregulation of a transmembrane form of PrP (ct”PrP). Heightened 
expression of this abnormal form in transgenic mice correlates with spontaneous neurological 
disease, recapitulating many features of a TSE clinically and neuropathologically, but the 
disease is not transmissible.[44] ctmPrP is also noted in non-genetic models of TSE. 
Negligible amounts of “mPrP are present in normal brain, despite facile synthesis of this and 
an N-transmembrane form in cell-free translation systems, in accordance with the hypothesis 
that altered topological forms and structural conformers of PrP are harmful and therefore 
usually degraded immediatlely after synthesis.[26] 

Clinical spectrum of human TSE 

Sporadic CJD 

Sporadic CJD typically pre,sents as a rapidly progressive dementia, often accompanied by 
cerebellar ataxia and myoclonus, with death in an akinetic-mute state after a median of 4-5 
months. Around 90% of patients die within 12 months, although survival for more than 2 
years is recognised.[48 and 491 Mean age at onset is about 60 years, with little difference in 
age-adjusted sex incidence. By striking contrast with the incidence of Alzheimer’s and 
Parkinson’s diseases, which, rises sharply with age, that of sporadic CJD declines after age 70 
years. [48 and 501 

Clinical features 

Non-specific prodromal symptoms such as anxiety, sleep disturbance, and weight loss occur 
in up to 40% of patients in the days to weeks immediately before clearcut features of CNS 
disturbance. Very abrupt (even stroke-like) presentations over days are also recognised in up 
to 20% of patients. Cognitive decline and behavioural disturbance are invariable features, 
with myoclonus and cerebellar ataxia in 70-80% of cases.[49] Other extrapyramidal features, 
such as rigidity, develop in up to 50% of patients. Pyramidal dysfunction and brainstem 
disturbance with diplopia are not infrequent. Less common presentations include isolated 
disturbed vision (Heidenhain form), and non-myoclonic involuntary movements such as 
chorea, athetosis, and hemiballismus. 

For sporadic CJD, the clinical profile and some key findings correlate with PrPres glycoform 
type and PRNP codon 129 status.[5 l] Western blot PrPres migration patterns (types 1 and 2), 
based on mobility of the unglycosylated band, coupled with presence of either valine or 
methionine at codon 129, allow delineation of six phenotypic subtypes. MM1 and MVl 
correlate with around 70% of all cases of sporadic CJD. Electroencephalography usually 
shows typical widespread, synchronous, periodic, l-2 Hz, sharp wave discharges and rapidly 
progressive dementia is the dominant clinical feature, with a mean illness duration of only 
3.9 months. In patients with rarer subtypes, electroencephalography does not show 
diagnostically specific changes and survival is generally longer than 12 months. For 
example, MV2 patients present with ataxia, have km-u-type plaques, and the illness lasts an 
average of 17 months. MM2-thalamic patients show prominent thalamic and inferior olive 
degeneration, with little or no spongiform change, little PrPres on western blot, and frequent 
insomnia-indeed, the clinilcal profile of this subtype has been designated sporadic fatal 

. 
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insomnia.[52] 

Clinical investigations 

Electroencephalography (presence of periodic, l-2 Hz, sharp wave discharges) previously 
was the only non-invasive investigation available to offer objective support for diagnosis, but 
its overall sensitivity is only 66-70%.[5 1, 53 and 541 Non-specific cerebrospinal fluid 
markers of neuronal injury are proving valuable, and the most useful ones are neuron-specific 
enolase and 14-3-3 proteins. [53, 5.5, 56, 57 and 581 In a large study, detection of 14-3-3 
protein in cerebrospinal fluid proved superior to electroencephalography, with a sensitivity of 
94% and a specificity of 84,%, [53] which was similar to values in another study; [56] only 
rarely did patients manifest periodic, l-2 Hz, sharp wave discharges but negative 
cerebrospinal fluid. [53] 14-3-3 protein in the cerebrospinal fluid has been incorporated into 
diagnostic criteria for sporadic CJD. 

The limitation of 14-3-3 protein detection in sporadic CJD is non-specificity, and sensitivities 
and specificities of around 90% can only be achieved in highly selected groups, so this 
technique is best used for confirmation and not for screening. False-positive results are 
reported in a range of diseases causing substantial synchronous neuronal injury, including 
encephalitis (especially due to herpes simplex virus), recent cerebral infarction, and 
paraneoplastic neurological disorders.[53 and 561 

With MRI, typical findings in CJD and related disorders include high signal in the caudate 
nucleus and putamen.[59] I3oth fluid-attenuated inversion recovery and diffusion-weighted 
MRI sequences are preferred for patients with suspected CJD. 

0 Genetically determined TSE 

The three main genetically determined phenotypes are familial CJD, Gerstmann-Straussler- 
Scheinker syndrome, and fatal familial insomnia. All are inherited in an autosomal dominant 
pattern (tigure I). In these genetic forms, PRNP mutations predispose to production of PrPres 
and high likelihood of disease during the individual’s lifetime. 

Familial CJD 

Various PRNP mutations have been recorded in patients dying with CJD (figure 1 ), and these 
account for around 14% of the total. [60] In neuropathologically confirmed cases, several 
point mutations and octapeptide repeat insertions have been described. Concordance between 
mutation and phenotype is not absolute. Longer octapeptide repeat inserts are often 
associated with illnesses more in keeping with Gerstmann-Straussler-Scheinker syndrome. 
[6 l] Additional mutations in cases not confirmed pathologically are missense changes, a 
single octapeptide repeat insertion, and a two-octapeptide repeat deletion. Phenotypic CJD 
diversity between and within affected families is recognised for specific mutations. 

Absence of similar neurodegenerative disorders within a pedigree is commonly recognised 
for CJD-related mutations, raising the likelihood of high spontaneous PRNP mutation rates, 
[62] underappreciated family history, or incomplete penetrance, thus confirming the need for 

0 
systematic genotyping if these disorders are to be properly classified. Penetrance of PRNP 
mutations is usually high, but existence of healthy octogenarian carriers of certain mutations 
suggests additional disease expression modifiers.[63] The E200K mutation has been 
identified as a founder effect for the high incidence of CJD recorded in certain geographic or 
ethnic subgroups. [63] 
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Gerstmann-Strlussler-Scheinker syndrome 

Page 9 of :27 

The typical clinical features of this disorder are slowly progressive cerebellar ataxia, 
beginning in the fifth or sixth decade (but with onsets as early as age 25 years reported), 
accompanied by cognitive decline.[64] Patients with Gerstmann-Straussler-Scheinker 
syndrome share the distinctive and defining neuropathological feature of widespread, 
multicentric amyloid plaques, which are immunoreactive for PrP. Experiments with non- 
human primates and rodents show Gerstmann-Straussler-Scheinker syndrome to be 
transmissible, albeit with low overall take. Of PRNP mutations associated with the disorder, 
only the most common, P102L,[65] has been reproducibly associated with transmission, but 
even then in only 40% of such cases. 

A spontaneous neurological1 disease with many features of human Gerstmann-Straussler- 
Scheinker syndrome has been reported in a transgenic mouse model (P102L) of the disorder. 
[46 and 661 However, the low amounts of PrPres and absence of multicentric amyloid plaques 
in this model prompt some reservations. Also, failure to develop spontaneous disease in a 
second murine model involving gene targeting to introduce a single copy of the mutant gene, 
[67] suggests that the neurological disease phenotype might need very high expression levels 
of the mutant gene in transgenic mice. 

Genetics of Gerstmann-Strlussler-Scheinker syndrome and other less typical clinical 
forms 

Since the initial description of the P102L mutation,[65] which remains the most common and 
confirmed in descendants of the original Austrian family, various PRNP mutations have been 
described for phenotypes of Gerstmann-Straussler-Scheinker syndrome (table 1).[68 3 G13 1 V 
and P 102L mutations are generally associated with the typical clinicopathological profile of 
the disorder. Octapeptide repeats of varying size are noted in familial TSE; the shorter inserts 
are usually associated with CJD-like illnesses, whereas with typical Gerstmann-Straussler- 
Scheinker syndrome, eight or nine octapeptide repeats are reported. The considerable 
clinicopathological diversity of this disorder is probably related, at least in part, to different 
PRNP mutations. Discordance within families points to additional genetic and environmental 
disease modifying factors, including codon 129 status. 

Table 1. Less typical phenotypes reported in Gerstmann-SMiussler-Scheinker syndrome 

uw 

Fatal familial insomnia 

The term fatal familial insomnia was proposed in 1986 to describe an illness involving five 
members of a large Italian family.[69 and 701 In retrospect, the disorder probably should be 
classified as a type of thalamic dementia. [71] Sequencing of PRNP confirmed a mutation at 
codon 178, causing substitution of asparagine for aspartic acid (D178N). This mutation had 
been described in some familial CJD kindreds.[72] The apparently discordant phenotypes 
might be accounted for by the modifying effect of polymorphism at codon 129: fatal familial 
insomnia segregates with the D178N mutation when combined with methionine at codon 
129, whereas familial CJD with D178N is linked at position 129 to valine. [73] Detailed 
studies of kindreds containing the D 178N mutation have shown sufficient clinicopathological 
diversity and overlap to suggest that fatal familial insomnia and CID represent distinct 

http://www.sciencedirect.com/science?_ob=ArticleURL&_aset=W-WA-A-A-A-MsSAYVW-UUW... l/7/2004 



ScienceDirect - The Lancet : Transmissible spongiform encephalopathies 

profiles within a range of clinical patterns, and raise some doubts on the claim that the 
ultimate phenotype is governed entirely by the codon 129 allele. [62 and 741 

0 Clinical features 
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Onset is usually in the fifth decade, but ranges from age 20 to 63 years, with illness durations 
of 13-15 months (range 6-42).[45,69 and 741 Non-specific symptoms, such as pronounced 
weight loss, can be an early feature as well as lethargy and tiredness. Incomplete penetrance 
may be common, but other studies have confirmed the occurrence of spontaneous germline 
mutations. [62] 

Core clinical features are profound disruption of the normal sleep-wake cycle, with 
prominent insomnia, sympathetic overactivity, diverse endocrine abnormalities (particularly 
attenuation of circadian oscillations), and impaired attention. These features are thought to be 
related to severe selective 1~0s~ of thalamic nuclei, with impairment of important integrative 
and relay functions between the cerebral cortex and brainstem within the limbic system and 
central autonomic network. 

Clinical investigations 

Neuroendocrine assessments typically disclose a range of hormonal irregularities. Serum 
cortisol concentrations are increased with or without preservation of the usual circadian 
pattern of secretion. Polysomnographic recordings confirm strikingly reduced total sleep time 
and gross disorganisation of sleep architecture on electroencephalography, including virtual 
absence of typical periods of rapid eye movement and deeper phases (non-rapid eye 
movement) characterised b,y K-complexes, spindles, and slow waves. Even drugs such as 
benzodiazepines and barbiturates may be unable to induce sleep-like electroencephalographic 
activity. 

Detection of 14-3-3 proteins in the cerebrospinal fluid, diagnostically useful in sporadic CJD, 
[53] is usually absent in fatal familial insomnia. [75] Conventional neuroimaging with MRI 
or CT scanning is usually normal or shows non-specific cerebral or cerebellar atrophy, or 
both, whereas positron emission tomography with radiolabelled fluorodeoxyglucose often 
shows characteristic diminished metabolic activity in the thalami. [76] 

Neuropathology 

The brains of typical patients with fatal familial insomnia show characteristic restricted 
degeneration, largely confined to the thalami, especially the mediodorsal and anteroventral 
nuclei, and the inferior olivary nuclei.[69] As a result, in typical fatal familial insomnia, 
macroscopic examination of the brain generally does not show any gross abnormalities. [77] 
Irrespective of illness duration, low amounts of PrPres are usually noted diffusely in the 
subcortical grey matter and the brainstem by immunoblot techniques, whereas it is 
infrequently detectable by immunohistochemistry, most often in a synaptic pattern or as 
small discrete deposits in the cerebellum and inferior olivary nuclei. In longer surviving 
patients, greater amounts of PrPres are noted throughout the neocortex in association with 
more obvious and widespread spongiform change. Longer survival apparently allows more 
extensive and CJD-like topographical burden of disease. Of possible relevance to 
pathogenesis, the PrPres glycoforms are both type 2 in sporadic fatal insomnia and fatal 
familial insomnia.[52] 

Iatrogenic CJD 
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C JD can also arise from case-to-case horizontal transmission, invariably related to provision 
of health care. Iatrogenic CJD has arisen as a complication of neurosurgery, cornea1 grafts, 
implantation and therapeutic use of human dura mater, treatment with human cadaveric 
pituitary growth hormone and gonadotrophins, and stereotactic electroencephalography 
electrodes. Iatrogenic CJD remains rare, with 267 cases reported worldwide up to 2000.[78] 
Dura mater and pituitary growth hormone account for most cases. Generally, peripheral 
inoculation and dura mater implants are associated with ataxic presentations; with direct 
introduction of PrPres into the cerebrum (including comeal grafts) the presentation is with 
dementia. Titre of inoculum and site of inoculation determine incubation period. Direct 
intracerebral contamination with PrPres is associated with incubation times of only 16-28 
months; with dura mater grafts, incubation can be 18 months to 18 years (median 6 years); 
the longest delays (5-30 ye:ars) are associated with subcutaneous injection of pituitary 
hormones. 

Variant CJD 

Variant CJD was first reported in 1996,[3] and subsequent biochemical, neuropathological, 
and transmission studies have substantiated initial concerns that the disease is zoonotically 
linked to bovine spongiform encephalopathy. [4] 

Clinicopathologial features 

The distinctive clinicopathological profile of variant CJD has allowed formulation of ante- 
mortem diagnostic criteria.l[79] By striking contrast with classic CJD, patients with variant 
disease are much younger (median age at death 29 years), and about 60% present with 
psychiatric symptoms such as anxiety, insomnia, or withdrawal. [80] Neurological features 
are evident in about 35% of individuals at presentation, with unpleasant or painful sensory 
experiences the most common symptom. [80] By 2 months, nearly 60% of patients are 
reporting neurological symptoms, but it is generally more than 4 months before clearcut 
neurological signs such as gait disturbance, slurred speech, and tremor are evident, and 
longer than 6 months before involuntary movements (dystonia, chorea, or myoclonus), 
cognitive impairment, and ataxia are manifest. [80] Illness duration is usually longer than in 
classic CJD, with a median of 14 months. Death in an akinetic-mute state is a typical 
outcome. Neuropathologically, brains of patients with variant CJD harbour high burdens of 
widespread PrP plaques, some of which are encircled by vacuoles, prompting the designation 
florid plaques. All cases so far studied have shown MM homozygosity at the PRNP codon 
129 locus,[79 and 801 a finding consistent with the pattern of susceptibility in kuru (see 
below). 

Clinical investigations 

The electroencephalogram does not show periodic, l-2 Hz, sharp wave discharges in patients 
with variant CJD. Cerebrospinal fluid 14-3-3 protein is detected in only about half the cases, 
and tau protein in the cerebrospinal fluid may be more a more useful marker.[53 and 811 The 
so-called pulvinar sign (high T2 MRI signal in the posterior thalamus) is a useful 
distinguishing diagnostic feature, being present in about 75% of patients with variant CJD. 
[ 791 

Investigations with a very sensitive western blot technique have shown PrPres to be present in 
the skeletal muscles and spleens of a few patients with sporadic CJD.[82] By contrast, the 
variant form is characterised by high amounts of PrPres in, and transmissibility possible from, 
lymphoreticular tissues such as the tonsils and spleen, and, to a lesser degree, lymph nodes in 
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all patients.[83 and 841 This characteristic allows ante-mortem tonsil biopsy for diagnostic 
confirmation, but has created difficulties for public health because of the risk of human-to- 
human transmission through medical procedures, including use of blood and blood products. 
Data from a sheep bovine spongiform encephalopathy model confirmed transmission by 
intravenous blood transfusion, including from donor sheep midway through the incubation 
period. [85] 

Other findings suggest greater secondary transmission risks for variant CJD than had been 
thought for the classic form. Retina and optic nerve were reported to have PrPres by sensitive 
immunodetection, with amounts in optic nerve around 25% of those recorded in brain.[84] 
Low amounts of PrPres were also detected in the rectum, thymus, and adrenal gland of one 
patient. Compounding concerns about the potential serial human passage of bovine 
spongiform encephalopathy are uncertainties about the existence of a large cohort of people 
infected with variant CJD but with long presymptomatic incubation periods, during which 
transmission is possible, as suggested by animal work.[86 and 871 

Kuru 

Kuru came to the attention of western medicine in the mid-1950s.[88] The disorder was 
geographically circumscribed, endemic in the Fore linguistic group in the eastern highlands 
of Papua New Guinea, but .was also seen in groups with whom the Fore often intermarried. 
[89] At the peak of the epidemic, an annual prevalence of up to 10% was seen in some Fore 
villages. [88 and 901 Kuru in the Fore language means to shiver. Along with cerebellar 
ataxia, these features form the principal clinical hallmarks of kuru. Classification as a TSE 
began when a veterinary pathologist noted epidemiological, clinical, and neuropathological 

i similarities between kuru and scrapie, [91] followed by successful transmission of kuru to 
chimpanzees. [92] 

Laboratory and epidemiological data pointed to transmission of kuru via cannibalistic rituals 
as part of the mourning for deceased relatives.[89] Women and children ate the internal 
viscera (including the CNS); men consumed less infectious tissues, such as skeletal muscle, 
and were at lower risk of km-u. Aside from ingestion of infectious tissues, conjunctival, nasal, 
and skin contamination were other possible modes of transmission. [93] 

Since cessation of cannibalism in the mid-to-late 195Os, prevalence of km-u has steadily 
declined, although the epidemic tail is lasting longer than expected. The gradual tapering of 
the epidemic has been associated with a progressive increase in age at onset, with km-u 
victims in recent times aged older than 40 years. Contributing to this factor are susceptibility 
factors, age of exposure, and titre of ingested tissues. Methionine homozygosity at codon 129 
of PRNP is one important susceptibility determinant, increasing the risk of kuru, with 
resultant younger age at onset, shorter incubation periods, and shorter illness duration.[94 
and 951 Typically, MM children consuming highly infectious brains died from kuru before 
adulthood. Only later in the epidemic did valine homozygotes and methionine/valine 
heterozygotes, and those exposed to less infectious tissues, develop disease, usually in 
adulthood. Incubation periods of more than four decades are now recognised for the tail of 
this epidemic, which has had a major effect on the population genotypes of surviving Fore 
( table 2), and indeed suggests that other major epidemics of a TSE-like illness may have 
happened in prehistoric times to shape the worldwide distribution of this PRNP 
polymorphism. [96] 

Table 2. Distribution of PRNP codon 129 polymorphisms in people with km-u, sporadic CJD, 
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and variant CJD compare:d with normal population frequencies 

Chronic subclinical infection 
The notion of latent or subclinical infection in TSE has been revived[98] by studies with 
mice. [86, 87,99 and 1001 A striking feature is the extended survival and apparent good 
health (for up to hundreds of days) despite chronic infection. Brains of these asymptomatic 
animals carry high titres of infectivity similar to those of mice dying from terminal disease, 
with typical spongiform changes sometimes seen histologically and PrPres recorded on 
western blots.[86, 87,99, 101 and 102 ] Such findings challenge previous ideas of the species 
barrier and the notion that disease expression is a prompt and inevitable result of PrPres 
accumulation in susceptible hosts, and might also relate to observations of incomplete 
penetrance in older people carrying PRNP mutations.[69] Further, these data accord with 
hitherto unrecognised or underappreciated adaptive or compensatory mechanisms (such as 
enhanced clearance of misfolded or aggregated proteins) existing within mammalian cells, 
which could offer novel therapeutic strategies. If confirmed, these results would mean that 
highly sensitive biochemical assessments and masked transmission studies from apparently 
unaffected animals would have to be done before any particular test sample could be said to 
be free of infectivity. 

The possibility of natural chronic asymptomatic infection engenders concerns about potential 
subclinical reservoirs that, ,at least theoretically, could relate to maintenance of low-level 
endemicity and the protracted tails seen after epidemics of TSE, and be relevant to the chance 
of secondary transmissions arising in health-care settings from people carrying subclinical 
disease. Unfortunately, no reliable, minimally invasive, specific marker for preclinical 
diagnosis is available. 

Sporadic CJD and epidemics of TSE 
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CJD can arise de novo as a result of mutations in PRAY’, be secondary to horizontal (case-to- 
case) transmission, or most. usually (around 85% of total) be without apparent cause 
(sporadic). Sporadic disease has an annual incidence of only 1 *O-l 5 per million,[48, 103 and 
1041 although unexplained rates up to 3.9 per million have been reported for Switzerland. 
[ 1 OS] Such an unusual incidence may not simply be a result of enhanced ascertainment but 
could relate to exposure to bovine spongiform encephalopathy resulting in a sporadic CJD- 
like phenotype in PRAY’ codon 129 methionine homozygotes.[ 1001 For sporadic disease, 
however, the usual explanation is spontaneous somatic mutation in the neuronal PRNP pool 
or rare stochastic conformational changes in expressed PrP’.[ l] Covert low-level 
contamination (especially in a health-care setting) could offer an alternative explanation for 
some cases. [ 106 and 1071 Spatiotemporal clusters of CJD have been reported but point 
sources or case-to-case transmission links have not been proved. [ 1081 By contrast with 
variant disease, little experimental evidence exists for blood as a vector for sporadic CJD, 
and findings of large case-control studies militate against this concern. [ 1061 

Notwithstanding the low incidence of TSE and their limited infectiousness by comparison 
with many viral and bacterial diseases, epidemics such as bovine spongiform 
encephalopathy, variant CJD, and kuru (Box panel) can develop in unique situations. The 
precise origin of the bovine spongiform encephalopathy epidemic remains contentious. 
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Nevertheless, there seems little doubt that intercurrent with changes in rendering and 
livestock feeding practices (including supply of ruminant-derived protein supplements to 
calves), animals harbouring a TSE were recycled to healthy cattle with resultant rapid 
amplification to epidemic proportions. To date, nearly 200000 cattle have been identified 
with bovine spongiform encephalopathy in the UK, with spread to several other European 
countries, the Middle East, and Asia.[ 109 and 1 lo] Back-calculation modelling suggests 
almost 2 million cattle have been infected with the disease to date, with 1.6 million likely to 
have entered the human food chain. [ 1 IO] 

Box panel. Epidemics of TSE on a low-level endemic background of scrapie and sporadic CJD 

Countermeasures have curtailed the bovine epidemic and limited contamination of the human 
food chain. From December, 2000, European Union countries have been required to screen 
brains of all cattle older than 30 months for presence of PrPres before human consumption of 
the animal is permitted. New in-vitro techniques are as sensitive as bioassays using 
transgenic bovinised mice (which themselves are 10000 times more sensitive than bioassays 
with some wild-type mice),[ 1 I 1 ] and these tests could prompt re-evaluation of earlier 
assessments of the transmissibility of these spongiform encephalopathies from non-CNS 
bovine tissue, especially with reports suggesting that certain murine skeletal muscles can 
propagate infectivity. [ 11211 
As of Dee 1,2003, 143 definite or probable cases of variant CJD (with 137 deaths) had been 
confirmed in the UK, with six in France, and one each in Italy, Canada, Ireland, and the 
USA.[ I 131 All those tested are codon 129 methionine homozygous ( table 2). The French 
and Italian patients possibly contracted the disease by eating exported UK beef products; the 
other three patients from outside the UK had been in the country during the probable peak 
exposure years of 1988-90. Despite continuing uncertainty, some reassurance is being taken 
from UK surveillance data [ 114]( figure 3) and results of modelling studies.[ 1 I5 and 1161 If 
assumptions are made, including an exponential fall in risk after age 15 years, the variant 
CJD epidemic may already have peaked, at least among codon 129 methionine homozygotes. 
These surveillance data, looked at with reference to the years that bovine spongiform 
encephalopathy entered the human food chain, suggest an average incubation period of 
around 12 years, and raise concerns about the possibility of a second wave of variant CJD as 
a result of human-to-human haematogenous transmission ( figure 3). 
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Figure 3. Temporal profile of entry of bovine spongiform encephalopathy-infected cattle into 
human food chain and subsequent profile of reported variant CJDvCJD=variant CID. 
cCJD=classic CID. Incidence refers to absolute number of cases in every year. Temporal profile 
for bovine spongiform encephalopathy based on a back calculation differential mortality model 
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[ 1 IO] (left axis). Profile of reported variant CJD (right axis) might have reached an initial peak in 
the cohort infected by the oral route. [ 1141 

Decontamination issues 
The infectious agents of TSE resist conventional sterilisation and decontamination methods, 
[ 1171 especially on stainless-steel surfaces. [ 1181 Mild (especially non-ionic) detergents, 
chlorine dioxide, alcohols, potassium permanganate, hydrogen peroxide, aldehydes, 
ultraviolet irradiation, and (ethylene oxide are ineffective. Autoclaving at 134°C for at least 
18 min in a porous load device or for about 1 h at standard autoclave temperatures in a 
gravity displacement steriliser, or soaking instruments in 1 mol/L sodium hydroxide or 
concentrated sodium hypochlorite (more than 5000 parts per million available chlorine) for 1 
h, are the recommended procedures for reducing infectivity. [ 1191 Enzymatic proteolytic 
inactivation methods (alone or in combination with detergents) are under development. 

Therapeutic approaches 

No proven treatment for human or non-human TSE exists. Research tends to focus on 
compounds postulated to prevent-directly or indirectly-misfolding of PrPc to PrPres, 
diminish neurotoxicity, or promote clearance of pre-existing PrPres. Compounds studied 
include polyanions, sulfonated dyes, tetrapyrroles, polyene antibiotics, branched polyamines, 
cysteine protease inhibitors, acridine derivatives, phenothiazines, suramine, synthetic 
peptides,[ 1201 and small interfering RNA duplexes, which have been shown to silence prion 
protein expression and transiently abrogate PrPres accumulation in scrapie-infected 
neuroblastoma cells.[ 12 1 ] 

Two common screening techniques for identification of potential therapeutic agents are 
chronically infected mouse neuroblastoma cells and in-vitro cell-free conversion assays. 
Reduction or elimination of detectable PrPres from scrapie-infected neuroblastoma cells or 
scrapie-infected brain homogenates has sometimes correlated with prolongation of 
incubation times in disease models. However, this association does not always hold-for 
example, quinacrine cleared PrPres from infected neuroblastoma cells but did not inhibit 
conversion in the cell-free conversion assay, suggesting that this drug does not act by directly 
preventing PrPres formation.[ 1221 Confirmation of this tissue culture result led to support for 
use of quinacrine in clinical trials. [ 1231 However, failure of the drug to prolong survival in 
an in-vivo model of mouse-adapted TSE [ 1241 or to reduce PrPres load in spleens of 
intraperitoneally inoculated mice[ 1251 showed that conditions in vivo are probably much 
more complex than those in tissue culture. Efficacy is generally inversely proportional to 
time since inoculation; survival is rarely prolonged substantially if the gap between 
inoculation and treatment is more than a week. 

The ability of antibodies against PrP to clear PrPres from infected cell cultures[ 1261 and 
indefinitely prolong survival in peripherally inoculated mice, [ 1271 coupled to success of this 
approach in clearing plaques in animal models of Alzheimer’s disease, raises the possibility 
of a conventional vaccine a,pproach. The generally poor immunogenicity of PrPres (a native 
cellular protein with altered conformation) is discouraging. Nonetheless, a transgenic mouse 
model engineered to produce antibodies to PrP, which resists challenge to peripheral 
infection with scrapie,[ 1281 lends support to future efforts in this direction. Finally, since PrP 
knockout animals seem healthy and are totally resistant to disease, therapeutic strategies 
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aimed at gene targeting PRNP for downregulation are being pursued. 
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